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Abstract. The determination of the optical-model potential for a high-energy charged 
particle using the diffraction model phase shifts is discussed. It is shown that the finiteness 
of the nuclear charge distribution hitherto neglected makes a non-negligible contribution to 
the real part of the calculated potential at small distances. It is further observed that the 
form of the calculated potential is very much dependent on the model used for parametrizing 
the phase shifts. 

1. Introduction 

In a recent note Abul-Magd et a1 (1971) suggested that the nuclear phase shifts as deter- 
mined from the diffraction model analysis and the high-energy relation between the 
phase shift and the potential (Glauber 1959) may be used to determine the optical-model 
potential for highly absorbing projectiles at intermediate and high energies. Using this 
approach these authors calculated the optical potential for the scattering of 104 MeV 
a particles from "'Pb and 64Ni. Earlier Elton (1966) also followed the same approach 
to investigate the qualitative features of the proton optical potential at 180 MeV. In 
these works we, however, find that due consideration of the finiteness of the nuclear 
charge distribution has not been given. Either it has been neglected or its effect on the 
calculated optical potential was tacitly assumed to be negligible. Our aim in this paper is 
to show that the finiteness of the nuclear charge distribution has, in general, non- 
negligible effects on the calculated real part of the optical potential at small nuclear 
interaction distances. We further observe that the calculated potential is very much 
dependent on the model used for parametrizing the phase shifts. 

2. Theoretical consideration 

The elastic scattering amplitude f(0) describing the scattering of a charged nuclear 
particle from a target nucleus may be written as 

: m  

where k is the wavenumber, oI is the point-charge Coulomb phase shift and Sl is the 
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phase shift due to the nuclear potential plus the difference between the point-charge 
and the extended-charge Coulomb potential. 

The diffraction model approach to the scattering of a highly absorbing projectile 
consists of replacing the ‘nuclear’ scattering function SI = exp(2i8,) by some smooth 
function of I having few parameters which are determined by making a least-squares 
fit to the data. The parametrization is such that it incorporates those features of SI on 
which the scattering amplitude depends crucially. 

At sufficiently high energies when the wavelength is small compared to the interaction 
radius R and small-angle scattering dominates, the sum over I in equation (2.1) may be 
replaced approximately by an integration over the impact parameter b N Ilk giving 
(Rodberg and Thaler 1967): 

where q is the momentum transfer and the total phase shift function Xt(b) is defined as 
follows : 

Since for highly absorbing projectiles the Glauber approximation is found to be 
fairly good even at the intermediate energies (Simbel and Abul-Magd 1970), Abul-Magd 
et a1 (1971) suggested that the phase shift function zN(b) = 2dIekb as determined from 
the diffraction model analyses and the relation (Glauber 1959) 

hv 1 d X(b)bdb 
R r dr (b2-r2)’/2 

V(r)  = - - - (2.4) 

may be used to determine the optical-model potential for the scattering of 104 MeV a 
particles. In equation (2.4) V ( r )  is the potential leading to the phase shift function X(b) 
relative to the free field. 

However, we observe that when the point-charge Coulomb field is modified due 
to the extended nature of the nuclear charge distribution, as the case for the scattering 
of protons and a particles from nuclei is, the potential calculated by substituting 
zN(b) (= 24) for X(b) in equation (2.4), strictly speaking, is not identifiable with the 
conventional optical-model potential. This is because, as already described, the so called 
nuclear phase shift 6, is not only due to the nuclear interaction approximated by a 
complex potential but also to the modification in the point-charge Coulomb field caused 
by the extended nuclear charge distribution. Furthermore X(b) occurring in equation 
(2.4) refers to a phase shift function relative to the free field whereas 6,(b) is the phase 
shift (and hence the phase shift function XN(b)) relative to the point-charge Coulomb 
field. 

When the finiteness of the nuclear charge distribution is non-negligible the correct 
procedure, within the framework of the proposed method, is to use, instead of xN(b) 
the total phase-shift function Xt(b) = xN(b) + xpC(b), in equation (2.4), to obtain for the 
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total potential V(r )  the expression 

where 

hv 1 
r c r  

V(r )  = - - Iom ;x i ( t2  + r2)lI2 dt, ( i  = N, PC). 
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(2.5) 

The first term in equation (2.5) is the same as that calculated by Abul-Magd et a1 
(1971) arid identified as the optical-model potential. The second term can be easily 
evaluated by writing 

and making use of the relation for large 1 (Rodberg and Thaler 1967): 

ZZ'e2 AI 
hv I 

&=-- 

(where Z, Z' are the atomic numbers of the target nucleus and the incident particle 
respectively) which in terms of the impact parameter b reads 

dXpc 2ZZ'e2 1 -- 
db hv b' 

The result is Vpc(r) = ZZ'e2/r as expected. Alternatively, one may use the high-energy 
expression for the point-charge Coulomb phase-shift function : 

where a is the arbitrarily large screening radius (Glauber 1959), to obtain the same 
result (screening has no observable effect on the scattering). 

The potential V(r)  should be identified with the total potential Vop(r)+ Vc(r) used 
in the optical-model calculations for charged projectiles, where Vop(r) and Vc(r) are the 
complex optical-model and the modified Coulomb potentials respectively. This leads 
to the expression 

which differs from that calculated earlier (here denoted by VN(r)) bj; the term within the 
large parentheses. Therefore, it follows that unless Vc(r) = ZZ'e2/r, the real part of 
the potential in earlier calculations is not identifiable with the corresponding part of 
the optical-model potential, clearly Im Vop(r) = Im VN(r), 

Using equation (2.6) we may express the real and imaginary parts of VN(r) in terms 
of the 'nuclear' scattering function SI = exp(2i6,) after the substitution 1 N kb. The 
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resulting relations are : 

1 d(argS) 
Re VN(r) = JOm [- -1 dt 

7c b db b = ( p + , 2 ) 1 / 2  

and 

(2 .9~)  

(2.9b) 

which we have used in Q 3. 

3. Calculation and discussion 

In the following we apply equation (2.8) to calculate the optical-model potential for 
the scattering of 104 MeV a particles from nuclei. The nuclear part VN(r) is calculated 
using equations (2.9) and the generalized parametrization 

1 -c 
( 3 . 1 ~ )  

args, = [ao+al(l-L)+. . .]{I +exp[(l-L)/d,])-' (3.lb) 

employed by Hauser et al( 1969) to obtain very good fits to the elastic angular distribution 
data. To calculate Vc(r) we use, following Igo and Thaler (1957), 

1 1 x2 e-" f-enx enx 1 2 e-" - 1  
- -+---+- - x < l  
'Ze2[n2 2 6 n2 ( nx +y)](3+2+7) ' 

(3.2) 
- ZZ'e2 [t -- en(1-X) (t -+- ;)( e - n + z n + -  :)-'I , x > l  i R 

Var) = 

where x = r/R, R = 1.3A'I3 and n is a parameter to be discussed shortly. This expression 
is obtained by assuming Vc(r) to be that from a fictitious radial charge distribution which 
takes into account approximately the finite extent of the charge distributions of both 
the bombarding and target nucleus and is of the form (Hill and Ford 1954, Igo and 
Thaler 1957) 

(3.3) 

where po describes the central charge density and 1 < n < CO. The diffuseness of the 
fictitious charge distribution is described by the parameter n which is related to the 
90% to 10% fall of distance t through n = 2R In 5/t. Since for the commonly used 
Saxon-Wood charge distribution t is related to the diffuseness parameter a through 
t = 4a In 3, the predictions of the charge density given by equation (3.3) are essentially 
the same as those of a Saxon-Wood distribution of the half density radius R and 
a = 0.73R/n. (For all practical purposes the term %e-n in the denominator in equation 
(3.2) is negligible for not very light nuclei.) Further it may be verified that in the limit of 
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large n equations (3.3) and (3.2) give, respectively, the uniform charge distribution and 
the corresponding Coulomb potential Vc(r). 

In this work we have chosen rather arbitrarily t = 3.5 fm. (A slightly large value is 
taken in order to simulate the finiteness of the charge distribution of both the projectile 
and the target.) Physically reasonable variation about this value o f t  in the case of the 
distribution employed here or use of any other physically acceptable form for p(r)  
would in no way affect the qualitative conclusions of the present work. 

The results of the calculation for a moderately heavy nucleus (lZ4Sn) are presented 
in figure 1. It is seen that the finiteness of the nuclear charge distribution has non- 
negligible effects at small nuclear interaction distances. For heavier nuclei the effect 
is expected to be larger. 

Figure 1. The calculated optical potential for a-lZ4Sn scattering using the diffraction-model 
phase shifts of Hauser et al(1969). The full and broken curves respectively represent the real 
part of the potential with and without including the finiteness of the nuclear charge distribu- 
tion. 

Using the parametrization (3.1) and the parameter values as given by Hauser et al 
(1969) we have also calculated VN(r) for z08Pb. The forms of the calculated real (imaginary) 
parts of VN(r) turn out to be the same as shown in figure 1. Recalling the calculations 
by Abul-Magd et al (1971) using the parametrization of Ericson (1966), this implies 
that the calculated potential depends very much on the model used for parametrizing 
the phase shifts. In fact it is amusing to note that the shape of the real (imaginary) 
VN(r) resulting from the generalized parametrization resembles that of the imaginary 
(real) VN(r) as calculated by Abul-Magd et al(1971). It thus appears unlikely that the 
proposed method would be helpful in resolving the ambiguities in the conventional 
optical-model potential. 

Further, the finite charge distribution correction when applied to the calculation of 
Abul-Magd et al (197 1)  would manifest itself much more pronouncedly than shown 
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here. Because of small negative values of Re VN(r) within a large interior of the interaction 
region (figure 3 of Abul-Magd et al 1971) the inclusion of the correction in this case 
would cause Re VN(r) to change sign just inside the surface region and finally make it 
highly repulsive around the origin. 

It may be remarked finally that since, in the presence of a large absorption at the 
nuclear surface, the scattering is mainly governed by the behaviour of the optical 
potential in the surface region (Igo and Thaler 1957), the finite charge distribution 
correction as shown in figure 1 is unlikely to have any appreciable effect on the calculation 
of the cross sections. However, this may not generally be the case. It may happen that 
the calculated Re VN(r) turns out to be quite small compared to the correction term over 
a large part of the interaction region (an example of this kind has already been given). 
If so, the correction is expected to affect the calculation of the cross sections as well. 
Whatever is the case the present work clearly demonstrates the importance of considering 
the finiteness of the nuclear charge distribution for drawing any realistic conclusion 
concerning the radial distribution of the real potential predicted by the diffraction 
model phase shifts. 
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